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FOREWORD 

This is Summary Report No. 2 on the Booster Attitude Stabi- 
lization Network Synthesis. It was prepared by Republic Aviation 
Corporation for the National Aeronautics and Space Administration- 

Marshall Space Flight Center, under NASA Contract NAS 8-5016. 

Principal investigators for the effort were Nicholas C. Szuchy, 

Mario H. Rhejnfurth and Robert S. Ryan of the Dynamic 
Joseph J. Lane, and Judith C. Johnson of Republic Aviation Corpo- 

ration. 
Analysis Branch, Aeroballistics Division, NASA-MSFC, were 
technical directors for the contract. 

1 iii 



ABSTRACT 34717 

This repod preenis the resuii;s of an investigation of a technique 
for synthesizing networks with resistive loads resulting in normalized 

element values that have voltage transfer functions meeting the gain- 

phase compensation requirements set by NASA By minimization of 
the least squared e r ror  function using an iterative process such as 
the %mgent descent to a minimum11 for a desk calculator, o r  the 
llgradient technique” for a digital computer, the normalized element 

values can be determined. 

The concept of synthesizing networks from topological consider- 
ations is developed in Sections IV and V. A quadratic lag function is 
considered in detail in Section VI; a comparison is made between the 
classical synthesis technique and the one considered in this report. 
By considering topological configurations of interest, the mathematical 
process ( which can be mechanized for  digital computer application) 
yields less complex networks and non-ideal passive elements than those 

determined by classical synthesis techniques. 

Recommendations are made for a digital computer program that 

should be written for 1) defining the objective function to include various 

network topologies of interest, and 2) mechanizing the iterative process 
used to determine the component values. The report suggests that addi- 

tional work in specific areas may lead to simpler, more straightforward 
computer procedures for the realization of any network that is generally 
optimum in terms of its configuration and passive elements. 
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SECTION I 

INTRODUCTION 

In the process of introducing stabilization networks in the attitude stabiliza- 

tion loop of space vehicles, design problems are  often encountered that may still 

be considered more in the realm of the vtartsll than the "sciences. ) v  In an effort 
to bring some form of organization to the "design art," a system approach has been 
considered that allows one to maintain an awareness of the ultimate circuit design 

objective while proceeding with the necessary calculations associated with network 
synthesis. By considering the problem from a rrlogicalgr point of view, it is felt 
that no clear demarcation between 1) approximation, and 2) realization, should 

exist. However, the technique suggested in this report is still a two-fold approach, 
with an interface relationship that allows for a simpler realization technique. 

The required performance characteristics of the phase-shaping (stabiliza- 
tion) networks are defined in Section II. The gain or  attenuation characteristics 
are first approximated by a finite number of semi-infinite slopes, each of which 
in turn is closely approximated by the attenuation curve of a Butterworth o r  
Tschebyscheff function. The resulting transfer function is then checked to deter- 
mine if the phase requirements are  satisfied. Depending on which is the more 
stringent requirement, i. e. , gain o r  phase, it is possible to interchange the pro- 
cedure outlined above. The resulting function forms a sort of interface require- 
ment that now also has to satisfy the circuit realizability conditions. Once the 

interrelationships are all completely satisfied, the associated rational transfer 
function completely defines the allowable phase-shaping networks. 

1 

The non-unique aspect of circuit synthesis allows for a very large number 
of circuits, all satisfying a specified transfer function requirement. Therefore, 

the circuit synthesis problem may be interpreted geometrically as '?the deter- 
mination of a particular desirable subset from that set which satisfies the 

circuit requirements. '1 The two possible approaches to solving this problem are: 

1) manipulating the mathematically defined requirements until a circuit topology 
is derived, o r  2) determining a likely circuit topology and fitting the circuit 
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parameters to the requirements by a minimization technique. 

Figure 1-1. Flow Diagram for Design Procedure I 2 ~ 

The latter approach is used in this report, since it allows the circuit 

design engineer freedom to determine the network configuration and to satisfy 

that requirement first before proceeding to the calculation of the circuit para- 
meters. The design engineer chooses a network topology that will satisfy the 

specified transfer function requirements, chooses initial values for the network 

element, and determines the network parameters by an iterative process that 
minimizes the e r ror  between the specified transfer-function and that of the 
initially chosen network. Since only RLC elements are admitted, this approach 
is concerned with passive reciprocal networks without mutual inductance. A 
flow diagram of the design procedure is given in Figure 1-1. 
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SECTION 11 

APPROXIMATION 

This section considers a method of obtaining a transfer function satisfying 

the NASA gain-phase specifications in terms of a finite number of semi-infinite 

slopes on a "Bode plot, 1f which may be considered as the straight line approxima- 
tions to the continuous curve defined by Butterworth functions. The following 

items will be discussed in this section: 

NASA specifications 
Approximation of a NASA specification 

A. NASA SPECIFICATIONS 

Figures 11-1 through 11-12 show the KASA gain-phase specifications as 
bounded regions on a "Bode plot." The equation associated with each figure de- 
fines the low order solid line curve that closely satisfied the requirements. The 
technique used to fit the specifications may be simply described as a judicious 
modification of the semi-infinite slope approximations. The term f'judicious 
modification" is used because once the form of the expression is derived, using a 
Butterworth or Tschebyscheff function, the break-points for the first-order terms 
and the damping ratio and natural frequencies of the quadratic forms must be ad- 
justed to give a closer t f f i t l f  to the specifications. 

The primary difficulty encountered in determining the equations was the 
fact that the various modes, as exemplified by the bounded regions, were all con- 
tained within a frequency band of about one decade width. A high-order rational 

function probably could be found that would satisfy both the gain and phase re- 
quirements exactly. However, it was  felt that the increased complexity of the 

circuit would more than outweigh the small errors  introduced by an inexact fit. 

B. APPROXIMATION O F  A NASA SPECIFICATION3 

The routine of determining the transfer function for the particular set of 
specifications of Figure II-11 and Figure II-12 will now be considered, though 
on the surface they do not appear to be too restrictive. A semi-infinite slope 
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approximation to the curve indicates that a minimum attenuation requirement of 
24 db/octave exists between the first and second modes. Although this require- 

ment is not too difficult to satisfy if the attenuation requirement is the only thing 

that has to  be considered, the phase requirement imposes an added constraint 

that restricts the problem. A s  noted in Figure 11-13 and Figure 11-14 (log mag- 

nitude and phase diagrams for a first-order lag and a quadratic lag), the insertion 

effects are more pronounced on the phase angle (one decade before the corner 

frequency) than on the magnitude. Consequently, care  must be exercised in de- 
termining the breakpoint. 

4 From a table of factors of Butterworth polynomials for n = 4 (since the 
semi-infinite slope approximations are in multiples of 6n db/octave), it was found 
that the first two resulting quadratic lag terms are: 

= 0.3827) ( 0 . 9 2 3 8 )  
4 3 .981  'L'(3.981 

To turn the attenuation curve upward and at the same time introduce some leading 
phase angle terms to aid the phase requirements, a positive semi-infinite slope 
of 30 db/octave is introduced at a corner frequency of 12.59 radians. The result- 

ing lead terms from the table of factors of Butterworth polynomials for n = 5 are: 

After some adroit *radjustments, f f  the resulting transfer function was found to be: 

4 
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with the quadratic lag, Gx, " being introduced outside the system response 
specification to satisfy the realizability requirements. 
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Figure 11-13. Log Magnitude and Phase Plots for a 
Simple First Order Lag Function 
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Figure 11-14. Log Magnitude and Phase Plot for 
Quadratic Lag Functions with Various 
Damping Coefficients 
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SECTION III 

DESIGN CRITERION 

The method of synthesis from the topological point of view 5' requires the 

adoption of a criterion to determine when a particular network transfer function 

t(s) "best" approximates the given transfer function T(s). An er ror  

will exist whenever the two transfer functions are not identical. 

The simple expedient of considering the square of the er ror  would produce 
a meaningful measure, since it would eliminate the problem of negative and posi- 
tive e r ro r s  negating each other. Specifically, the two functions developed in this 

section 

t 2 2 
E =I [R(ws)+ps) - l(ws)+(us) - %(as)] + [ R ( w ~ ) ~ ( w ~ )  + 1(aS)+(as) -n~(a~)] 

S=O 

and 

S l  

consider a sum-of-squares criterion as the useful measure of the error  between 

the two transfer functions. Each of the above er ror  functions states that over the 
whole spectrum, 

indicated by the above relations) will exist. 
at those discrete points of interest, some er ror  (as 

As with all e r ror  criteria o r  grading systems, it must be considered on an 
individual basis and satisfy the particular requirement of the situation. Both error  

Equations (III-2 and III-3) axe developed and presented, although the first one was  
used extensively for the calculation of the network parameters. Since both are 
similar and valid definitions of a form of the sum of square e r ror  criterion, for 
the purpose of clarity, a distinction is made between them by calling the first 

19 



er ror  function E and the second error  function a .  The following items will be 
discussed in this section: 

E Error  criterion 
@ Error criterion 

A. ERROR CRITERION 

form 
From the curve approximation, the transfer function is 
as : 

n 
P 

T(s) = 

L NiS' 
i= 0 
m 

D.& 
1 

j=O 

2 n N + N S + N S + ---- + NnS 0 1  2 
2 Do + DIS + D2S + --- + D S" m 

defined in general 

At the discrete frequencies of interest, the above may be evaluated in terms of 
its real and imaginary components as: 

The transfer function derived from a particular topology can be defined in 
the frequency domain as: 

where: 

nR(as) = real component of numerator 

nI(ws) = imaginary component of numerator 

%(Us) = real component of denominator 

%(us) = imaginary component of denominator 

20 
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Equations 111-12 and III-13 are used in the linearized approximations to deter- 

mine the increments added to each variable xi at each point in the iterative pro- 
t cess. 

i 
B. ERROR FUNCTION I 

From the given NASA graphical performance specification, the minimum- 

phase physically realizable transfer function can be represented by the rational 
function of the complex frequency variable as n 

2 1 A d  1 

2 m 
.......... 

(m-14) 
Ao+ A1S+A2S + n -  - i=O A 8 

T(s) = - 
Bo+ B I S + B  S + .......... B e 2 m 

Separating the two rational polynomials of Equation (III-14) in terms of M and N (their 
even and odd parts, respectively) results in I 

I 

2 3 
(Ao+A2S +... .) t (AIS+A$ +. . ..) 

2 (Bo+B2S +. .. .) t (BIS + B3E?+. ... ) 
M +N 

1 1 -  T(s) = - 
M2+N2 

(III-15) 

Rationalization of Equation III-15 results in 

(III-16) M2-N2 - M1M2-N1N2 + N1M2-N2M1 T(s) = Y+N1 X 2 2  
- 

M2+N2 M2-N2 M:-N: M2 -N2 

where the first term on the right is an even function of s and the second term on 
the right is an odd function of 8. 
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Thus, for a set of discrete angular real frequencies, Or, (r= 1 , 2 , .  . . m), 
Equation (DI-16) can be written in terms of real and imaginary components suit- 

able in the manipulations of subsequent work, as: 

M1M2-N1N2 + NlM2 - N2Ml 

2 2  M:-N~ M2 -N2 

T( jo )  = r 

s=jur 

= RWr) + jI(Wr) 

(Ill-1 7) s=jur 

The requirements for the control application under consideration are to 
synthesize a linear, passive, reciprocal, transformerless three-terminal net- 
work (3T. N. ) with given terminations, the transfer function of which closely 
approximates Equation (III - 14) in its coefficient values. 

The approximating transfer function obtained from that class of networks 
containing the desired topology is: 

2 n ....... - i = O  0 2 ans - 
a + a l s + a  s + 

2 m m bo+bls+b2s + ....... b s 
m 1 b.sj 

1 

(IU-18) 

j=O 

where the summation running variable is of the same order a s  that of Equation (111-14). 

Equation (ID-18) will, in general, be nonlinear in both the discrete real frequency 
variable (which may o r  may not be periodic) and its coefficients, the available 
dependent variable parameters, which are normally multilinear functions of the 
element values of the network. For convenience of notation, the dependent vari- 
ables are  defined as x. where i = 1 , 2 , .  ... n. Rewriting Equation (m-18) in the 

1 
form to coincide with Equation (III-17), we obtain, 

24 
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n m  - n m  

m - n  
1 2  2 1  m m  - n n  

TOWr) = 2 + 2 2  
1 2  1 2  

m22-n2 2 2  
Is=jw, I s=jw, 

For r = 1,2, .... n 

= R0@? + jIo(u! 
(In-19) 

Network synthesis being non-unique, there are an infinite number of circuits 
satisfying Equation (III-14), but since we have imposed topological constraints, 

our investigation is limited to a finite number. Even so, the element values in 

a single circuit satisfying the constraints may take on any number of possible 
combinations of values and sti l l  satisfy the terminal conditions. The objective 

is to determine any set of element values (Ri, Li, Ci) contained in Equation 
(III-18) which approximates Equation (III-14), the set to consist of realistic 
values. The unknown element values of Equation (El-18) approximating Equa- 
tion (III-14) are determined by the minimization of the sum-of-squares error, 
i. e. , optimization in the least squares sense. This e r ror  criterion was chosen 

on the basis of being mathematically the most tractable problem. 

The principle of least squares states that the most desirable values of the 
unknown parameters are those for which the sum of the squares of the errors 
(differences between approximating and desired functions) is a minimum. 

The sum-of-squares error  is derived as follows: 

Form the numerical difference between Equations (IU-17) and (ID-19): 

Take the absolute value of both sides: 

(In-21) 
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Squaring both sides of Equation (III-21) results in: 

It is this quantity in Equation (111-22) redefined as 

which is to be minimized. 

26 
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SECTION IV 

CIRCUIT TOPOLOGY 

In this section, a description of the networks is considered in terms of 

their physical geometry or configuration; it consequently has the generic title of 
network "topology" as  the all-inclusive property. Since only the basic concept 
of the mathematics of topology is necessary to yield interesting and useful results 

in the application of network synthesis, the following items will be discussed in 

this section: 

Graph Concept 
Circuit Equations 

A. GRAPH CONCEPT' 

When considering an electrical network from a geometric or topological 
point of view, its graph is of great importance. A graph is a diagram represent- 
ing the structural framework of the network; it is found by replacing each of the 
circuit elements by line segments, with each line segment connecting two vertices, 
or nodes. 

A branch is a line segment of a graph, including its two vertices. Its length 
or curvature has no meaning; only the vertices it connects are  important. Each 

network element, i. e. , resistance, capacitance, o r  inductance, could be considered 

a s  a branch; or a complicated combination of network elements could be considered 
as a branch. Mutual inductances are excluded from this consideration and con- 
sequently are  not defined. In drawing a graph all sources are removed, with the 
voltages short-circuited and the current open-circuited. Figure IV-l(a) is an ex- 

ample of an electrical network and its associated graph, Figure IV-1@). 
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Figure IV-1. Electrical Network and Its Associated Graph 

In summary, in the graph concept the topology of the network is important, 

i .e. , what branch connects which node pair. A mathematical description is pos- 
sible by formulating an array having one column for each branch and one row for 

each node. In each row of the array a +1 is placed in the column corresponding 
to a branch termination, a -1 is placed in the column corresponding to a branch 

origin, and ze ro  if neither of the preceding two conditions is satisfied. The 
array so generated is termed the node-incidence matrix or  vertex-incidence 
matrix of the graph (In). Another topological description of the graph is possible, 

(leading to a dual development) by noting the incidence of the branches on the 

loops, then formulating an array having one column for each branch and one row 
for each loop (or mesh). In each row of the array,  a +I is placed in the column 
corresponding to a branch direction the same as  that traversed by the loop; a -1 

is placed in the column corresponding to a branch direction opposite to the one 

traversed by the loop; and zero is used if the branch is not contained in the loop. 

\The array so generated is termed the branch-mesh incidence matrix of the graph 

(I,). Since the latter description is the only one used in the present work, it 
will  be simply designated by the capital letter 11111 without any subscript; all sub- 
sequent derivations wi l l  be directed along this line. 

The graph concept allows one to formulate Kirchhoffls basic circuit laws 
10 in  concise matrix notation as: 

28 



1) Kirchhoff's current law (KCL) - The summation of all the branch 

circuits at a node, by the continuity condition, must be zero. 

C i  - C i  = O  
P p q  q 

p represents all branches terminating at node n 

q represents all branches originating at node n 

in matrix notation this can be written as: 
[I,] [ i (t)l = o 

where [In] = node-incidence matrix 

ti (t) 3 = column matrix of branch currents. 

2) Kirchhoff's voltage law (KVL) - The summation of the branch voltages 
around a closed loop, must be zero. 

C v  - c v q = o  
P p q  
p represents all branch voltages in direction of loop traverse 
q represents all branch voltages in the opposite direction of loop 

traverse 

In matrix notation this can be written as: 

CI3 Cv @)I= 0 (N-3) 

where [I ] = branch mesh incidence matrix 
[v (t) ] = column matrix of branch voltages. 

KVL in terms of the branch voltages is given.by: 

11 C v (t)l = [ee(t)l (N-4) 

where [e (t)] is the column matrix, each of whose elements gives the total 
source voltage rise in  the corresponding loop. 

e 

Now : tib,(t)1 = Crl ' [ie(t)l (N-5) 
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or  [ Z l  tie(t)l = Cee(t)l (N-9) 

where [z1 = [I1 Lzbrl b]' 

Where Z in  Equation (IV-9) represents the impedance matrix for a particular loop. 

Adapting the Kron" convention of referring to the diagonal matrix [ Zbr l  as 

it is possible to determine the impedance matrix for the network once 

the primitive network impedance matrix or simply the "primitive impedance 

matrix, 
the incidence matrix for the topology is known. 

A s  an example of the usefulness of the 7'primitive matrix1? concept, consider 
the development of the network impedance [Z] for  the three-loop five-branch net- 
work shown in Table lV-2, Figure 5. From Equation N-9 

7 0  
[zl = [I3 [ Z b r l  CII ' 

therefore the characteristic impedanceLL may be determined by matrix multi- 
plication by considering the expression 

1 -1 

0 0 0 z 4 0  1 0  

1 0 0 0 0  Z E p  O 
resulting in: 

i(Zl+Z2) 

[zl= 1 -z2 

l o  

-z2 

+z +z ) (z2 3 4 

-z3 

O l  

B. CIRCUIT EQUATIONS 

Considering a generalized n-mesh linear network, it is possible to write 
13 the l'equations of motion" describing its behavior as: 
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+ '3nin E3 = Z31 i3 + Z32i2 + Z33i3 + ----------- 

El, EZY . . . En represent the voltage, or the forcing or disturbing function 

appiieci to the contours of the mesh under consideration. By the principle of 
superposition, the total effect of the voltages applied to the network is equal to 

the sum of the effects of each individual voltage applied individually. For this 
report, without losing any generality, only one forcing function is considered, 

with all the others being equal to zero: E = E. Therefore the above equations 
in matrix form may be written as: 

0 

0 

0 

or: 

'In Zll Z12 Z13 -------- 

'Zn ZZ1 ZZ2 z23 -------- 

'3n z31 z32 z33 -------- 
. . .  
. . .  
. . .  

'nlZn2 'n3 'nn 

1 

2 

3 

i 

i 

i 

i n 

The elements Z..y are in general complex quantities, where: 

11 { i # j Represents mesh mutual impedances 

11 

z. .  = 
i = j Represents mesh self-impedances 

Therefore the current through the k* loop may be determined as: 

the voltage drop across an impedance in the kth loop is: 

e k = Z  i k k  

(rv-11) 

(N-12) I 

~ 

(N-13) 

~ I 

(IV-14) 

(N-15) 
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resulting in a transfer function: 

Branch Configuration Impedance Function (Zi) 

1 R + L S + -  -t cs 

4 6  cs 

i t  cs 

- R + LS 

R + -  1 

+ R 

1 - 
.. 

ek 'k 

Tzl - = t ( s )  = (IV-16) 

11111 represents the minor of the determinant lZ 1 ,  resulting from the cancelling of 

that column which belongs to the variable of interest, and of that row which cor- 

responds in Equation (IV-11) to the expression with the non-zero right side. 

The determinant of the impedance matrix Z developed in Equation (IV-9) is 
identical to the one in Equation (N-14), therefore there is a definite link between 
the topological development of the impedance function and the circuit development. 

Table IV-1 summarizes the five admissible14 branches considered in this 
work, as making up the primitive impedance matrix [ Z ]  . 

TABLE IV-1 
~ ~~ ~~ ____ ~~ ~ 

ADMISSIBLE BRANCHES 
I 
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n - 
n 

- N  
- 

N 
N 

+ - 
N - F;' +- 

N 

N 
N 

+- tj- 
N 
Y I 

- 
I? + y- 0 
N- 

e -  

NN + $ y- 
N- 

t 

f - $i' + 

N m IC m 
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TABLE IV-3. SUMMARY OF DERIVED TRANSFER FUNCTION 

i 

i 
c 

T ( 8 )  = n =  o N,S" 

0 

2 

2 

2 

4 
4 
4 
4 
4 
4 
4 
4 
6 
6 
6 
6 

6 

6 

1 
1 
2 

3 
3 
4 
4 

5 
5 
5 
5 

5 
5 
6 
6 
6 
6 
6 

6 

Figure 
IV-4 
IV-3 
IV- 6 

IV- 8 

IV- 5 
IV-7 
IV-10 
IV-12 
IV-14 
IV-15aa 
IV-15bb 

IV-17 
IV-9 
IV-11 
IV-13 

IV-15a 
IV-15b 
IV-16 

Title - 
Resistive Load, One Loop, 3-Element Circuit 
(?ne Loop, 5-Element Circuit 
Resistive Load, Two- Loop, 8-Element Circuit 
Resistive Load, Two- Loop, 6-Element Circuit 

Tu-i> Loop, 1 0-Element Circuit 
Two Loop, 8-Element Circuit 
Resistive Load, Three Loop, 13-Element Circuit 
Resistive Load, Three Loop, 11-Element Circuit 
Resistive Load, Three Loop, 11-Element Circuit 
Resistive Load, Three Loop, 12-Element Circuit 
Resistive Load, Three Loop, 11-Element Circuit 
Resistive Load, Three Loop, 9-Element Circuit 
Three Loop, 15-Element Circuit 
Three Loop, 13-Element Circuit 
Three Loop, 13-Element Circuit 

Three Loop, 14-Element Circui t  

Three Loop, 13-Element Circuit 

Three Loop, 11-Element Circuit 
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SECTION V 

MINIMIZATION TECHNIQUES l5 

The problem of minimizing L&e error f i i j - icG~~ E cf '&e sc-qer-! yapl&lep 

xl, x2, . . . .x 
with respect to these variables, was restricted in this effort to the consideration 

of three basic techniques:16 1) the tangent descent method; 2) the Southwell 
relaxation technique; and 3) the method of steepest descent, or "method of 
gradients." Since manual computation was used exclusively to determine the 
element values, the first two techniques proved to be most useful, since they in- 

w h e d  cc!g *&e first partid derivatives. However, with the digital computer, the 
method of steepest descent (requiring mixed second partials) would be used, 
since practically no computational discrimination on the part of the computer is 

required. 

which possesses continuous first and second partial derivatives n' 

The general problem of determining the actual element values will be con- 
sidered from a minimization point of view. The following items are discussed 

in this section. 

Inequality Constraints 
Quadratic Program 

A. INEQUALITY CONSTRAINTS 

The algorithm for performing the search for the minimum of the e r ror  

function E, with respect to all the variables xi, reduces in general to: 1) care- 

fully specifying the initial or starting point xio about which one is interested, 
and 2) searching about this point until the er ror  criterion is satisfied. As long 

as the resulting xi's represents physically realizable elements, the technique 

for obtaining the extremum point is an extension of the classical techniques 

frequently emplayed to compute the unconstrained minimum of a function of 
many variables. The consideration that all  variables must be bounded leads 

immediately to the problem of minimization with inequality constraints. 
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, 

In this effort, the constraint inequality limits the variables to only positive 

values. The minimum is therefore a point in the interior of the constraint set. 
The allowable direction of motion towards the minimum point is along any sur- 

faces o r  constraint surfaces which contain the x.'s. 
1 

Figure V-1 illustrates the case of two variables with inequality constraints. 

The variable x1 is a bounded variable having a least upper bound U1 and a greatest 

lower bound L1 such that L1 I x1 SU1. The variable x2 possesses a least upper 
bound U2 and an inequality constraint on the lower end such that 0 acZ I U2. Be- 

cause of the non-linear aspects of the problem, the relative minimum of the 
objective e r ro r  function as determined by paths contained on the surfaces must 

be tested to determine that no other point gives a lower value of the objective 
function. A t  present the test consists of simply defining a new set of initial values 
at  a point near the original initial point and minimizing to determine if the process 

converges to the same local extremum point. 

B. QUADRATIC PROGRAM 

To achieve the minimization of a, a variation of the "gradient technique'' 

called "descent along a tangent" will be applied to assure convergence to a mini- 
mum? It involves a systematic procedure of arriving a t  amin through successive 
evaluations of @ a t  each change in the unknown parameters starting with an initial 
guess of the variables. The iteration is continued until @ begins to increase, and 

then the iteration method is changed to the "Taylor Series Approach" until the 
minimum is found. 17 

In the descent along a tangent method, ih is approximated by a linear function 

@ = Q0 + En an 
where: e n  represents a change in the variable xi in the direction of the 

normal to = constant 

* See Appendix "All for geometric illustration of the derivation of equations. 
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E 

and: 

Figure V-1. Surfaces for Minimization with Inequality Constraint 

1 
an=@= an I grad,,={ i = O  (2i)2}2 

For @ = 0, we have: 

The changes in the individual coordinates xi, are given by: 

ci = cn cos (n, x.) 
1 

(v -2) 

(v-3) 

(v-4) 
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where : 
so that: 

(n, xi) is the angle between 

@ 
cos (n, x.) = - , and ai = 

Combining Equations (V-2) - (V-5), we 

i 

'n 

'0 'i 
€. = - 
1 [ c" (q] 

i= 1 

Change all coordinates xi to x. + F. and 
1 1  

the normal n, and the x. axis. 
1 

ax i 

obtain: 

(V-6) 

solve for @. Repeat the process until 4 i s  
minimized, o r  until a point i s  reached at which @ increases; then use the Taylor 

Series Approach, repeating the whole process until there is no significant change 

with minimum of <h. 

In the Taylor Series Approach, the least squares optimization is the mini- 
mization of the sum of the squares of the difference between the desired function 
and its linear approximation a t  the sampled points. 

Expanding Equation (111-17) in a Taylor Series consisting of the linear terms 

in ci, i .e . ,  all terms of order higher than the f i rs t  being omitted: 
n a To ( j  ar) n 

e M To (jar) + C Ti (jar) F a xi i= 1 i i= l  

where the subscript in Ti denotes partial differentiation and is the ith derivative 
evaluated a t  the r* sampled point. Rewriting Equation (V-7) by transposing all 
terms on the right: 

T (jar) = To ( j  ur) + C 

(V-7) 

n 

i= 1 
T (jar) - To (jar) + C T. 1 ( j 0  r i  ) €.I= 0 

Combining Equations (V-8) and (III-20), we obtain: 

n 
((0,) - C 

i=l  

which can be written in expanded form as: 

Ti (jw,) ci M 0 (for all r = 1,2 ,  . . . , n) 

(V-10) 
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so that the quantity to be minimized in the least squares sense, redefining the 
symbolism used in Equation ( I I I - ~ ~ ) ,  is: 

i=l 1 

(V-11) 

Now, for M minimum, all its partial derivatives with respect to the variable 5 
must be equated to zero. This yields: 

(V-12) 

a set of n (linear in c.) simultaneous equations which must be soived for all i. The 
steps for the solution of Equation (V-12) are readily programmed for solution by the 
digital computer. The advantage of the Taylor Series Approach is that it does not 
require the computation of the second partial derivatives. 

1 

evaluated for all i. 
(V-13) 

The entire procedure for the computational steps required to obtain a solu- 

tion can best be shown when applied to a specific example. Consider the Rate 

Gyro Filter (Figures 11-3 and 11-4), having previously determined the transfer 
function to be: 

(v-14) 
- 1 

0.0625 s + 0.0125s + 1 
- 1 

2 T( s) = 

[ 1 + 0.%5)+(&$] 
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Note that: 
2 

M = l , M  = (0.0625 s + l), N1 = 0, N2 = 0.0125 s 1 2 

So that, from Equation (111-16) we get: 

(V-15) 

MlM2 - NlN2 - - [ 0.0625 s2 +1 1 (V-16) 
2 10.0625 s2 + 112 - [O. 0125 s ]  

Ev T(s) = 
M2 -N22 

(V-17) N1M2-N2M1 - I: -0.0125 s 1 
- N22 2 2 2 1  

Od T(s) = 

M2 L0.0625 s + 1 - 0.0125 s j 

- 

Along the ju axis, Equation (V-16) is strictly a real function of w and Equation 
(V-17) is an imaginary function of 0. Therefore, reinterpreting Equations (V-16) 

and (V-17) in light of Equation (111-17), we obtain: - -, 

11 - 0.0625 b.k 2 l  R(wr) = [ 1 - 0.0625 w:r+  [O. 0125 wr] 2 

r T 

2 
J -10.0125 wr 

2 I(w ) = 

[l - 0.0625 or 21 + [ 0.0125 wr] 

(V-18) 

(V-19) 

Next, determine the network resulting in required order of transfer func- 
tion. One such network meeting the requirements with specified termination is: 

R l  R 3  L3  

f 

Figure V-2. Terminated Network 

Writing Equation (111-18) in terms of the above circuit gives the transfer 
function: 

R4 
(s) = To( S) = - E out 

E in (R1L3C2) s2 + (L3+R1R4C2+R1R3C2) s + (R4+R3+R1) 

(V-20) 
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Making the substitution of xi in Equation (V-20) for  the dependent vari- 
ables results in: 

x1 = R 1  

x2 =c2 

X" = Ls 

x3 = R 3  

-f 

x = R 4  5 

(V-21) 5 X 

To@) = (x1x2x4) s 2 + (x4+x1x2x5 + x1x2x3)s + (x + x + x ) 
1 3 5  

Solving Equation (V-21) for real and imaginary terms as  required by 

Equation (III-191, we get: 
x 'x + x  + x  - i x x x  j cri 2 1  

5 L 1  3 5 1 2 4  r J 

(x +x x x 
(v-22) 

l 2  + X  x x ) W r  4 1 2 5  1 2 3  

Rowr) = 

x +x +x - (x  x x )o 1 3  5 1 2 4  r 

1 - x  p x 4 + x x x  + X X X ) W  5 1 2 5  1 2 3  r 

1 2 4  r 'r [ 4 1 2 5  1 2 3  

IoWr) = 

(V-23) 
l2 x + x + x  - ( X X X ) W  + ( x + x x x  + x x x ) o r  1 3  5 

We now let a0 be the value of @ in Equation (111-23) at the first approxima- 
tion of the variables xl, x2, x3, x4, and where x is fixed at the value of the re- 
quired resistive load. 

5 

Then: 

In the method of steepest descent along a tangent, we calculate increments 

from Equation (V-6), here repeated: 

a ? @  
(V-6) 

o i  
€. = - 
1 [ : ] 

i=l 

where Go is the value of @ at the initial approximation. 
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Also in Equation (V-6): 

a @  9i =- a xi 
(V-25) 

the value found from the initial approximation and denoted by: ai . 
0 

Therefore, evaluating Equation (V-25) we get: 

for all i = 1, 2,  . . . . , n. 

(V-26) 

In Equation (V-26), the first partial  with respect to xi of Equation (V-22) is: 
n 

+ 2  ( x + x x x + x x x ) w  a x + x x x  + x x x ) W  
aR 0 r -  ) 

i 

[ 4 1 2 5  1 2 3  r ] ( 5 [ ' 4  1 2 5  1 2 3  r ] ) }  
- 

(x +x x x +x x x ) w  4 1 2 5  1 2 3  r x +x +x -(x x x ) O  1 3  5 1 2 4  r 
a x  

(V-27) 

Also in Equation (V-26), the first par t ia l  with respect  to  xi of Equation 

n 
(V-23) is: 

1) x 4 +x 1 2 5  x x +x 1 2 3  x x ) w  r { -'5 [ (x4+x1x2x5+x1x2x3) % II-E-X5 [( 

3)) + 2  (x +x x x +x x x ) w  (x +x x x +x x x ) w  
[ 4  1 2 5  1 2 3  J(&[ 4 1 2 5  1 2 3  r a Io(Wr) - - 

a xi 2 { [ xl+x3+x5 - (x1x2x4) r"] + [(x4+x1x2x5+x1x2x3) Or ] '} 
(V-28) 
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and for the solution of Equations (V-27) and (V-28), we required the indicated 

(V-29) 

partial derivations of the variable x. for all i: 
1 

2 x + x + x  - ( x x x ) i r :  = - ( x x ) w r  1 3  5 1 2 4  r 1 2 

x +x x x +x x x )u = (x x +x x ) w  4 1 2 5  1 2 3  r I} 2 5  2 3  r 

ap- tX 1 = ix1x5ix1x3j ii 
ax2 LlA4IAi 2 5 1 2 3 rJ I r 

x +x x x +x x x ) 0 ]}= (x1x2) ur 
4 1 2 5  1 2 3  r 

]}= w r  4 1 2 5  1 2 3  r (x +x x x +x x x )(L: 

For the solution of Equation (V-6), Equation (V-26) h s to b determin d. 

Substitution of Equations (V-27), (V-28), (V-18), (V-19), (V-22), and 
(V-23) into (V-26), we obtain its solution f o r  use in Equation (V-6). With Equation 
(V-6) solved, we now add these increments to the values used in our initial approxi- 

mation, changing notation so that zero subscripts refer to the new approximations, 
and recomputing the solution to Equation (V-24) 

x. = x. + c 
1 i i  
0 

(V-30) 

We iterate with this method until Equation (V-24) increases, When this occurs, 

we resort  to the Taylor Series Approach defined by Equation (V-13) with those 

values of the variables as initial approximation used in the iteration step pre- 

ceding the increase in Equation (V-24) of the tangent descent process. 



Equation (V-13) can be writ ten in  matr ix  form as: 

T A  + A T A ) < = A R  T 
(*R R I I 

where: 

AR 

A =  I 

E =  

R2 

T 
E R + A I  EI  

. . . . R n ( q )  

. . . . Rn(w2) 

. . . .Rn (w,) 

(V-31) 

In (%) I ( w  ) .  . . . . 2 m  



E =  R 

E =  I 

and: 

RD (wr) = R(ur) - Ro(ur) is the real part of the error  evaluated at  the rth 
sampled point. 
is the imaginary part of the error  evaluated at 
the r sampled point. 

is the ith derivative of the imaginary part of To(jwr) 

is the ith derivative of the real part of To(jw,) 

th 
= W,) - Io(Wr) 

a ‘ 0  ( W r )  

th Ri(wr) = 

Ii (wr) = 

a xi evaluated at the r sampled point. 

a xi evaluated at the r sampled point. 

310 
th 

Equation (V-31) can be solvedfor the unknown by matrix inversion as: 

(V-32) 
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The required mathematical s teps  fo r  solution of Equation (V-32) are: 

(1) 

(2) Solve for the e r r o r s  E and EI. 

(3) 

Compute the derivatives Ri(ur) and Ii Cur). 

R 
Perform indicated mat r ix  multiplication, addition, and mat r ix  in- 

version. 

The above result in the solution of the set of n simultaneous equations which yield 

the new approximation (xi -+ x i i  + E.) to the minimum. 
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SECTION VI 

EXAMPLE 

This section is expository in nature, since a quadratic lag function syn- 

thesis is considered in detail and a comparison is made between the various 

methods used to develop the circuit and the resulting elements. A circuit for 
r .  .-l 

requirement a s  shown in Figures 
- a simple quadratic lag function 

11-5 and II-6 is synthesized, first by the "classical methodTt and then by the 

techniques presented in this work. The following matters will be discussed in 
this section: 

Classical Technique 
First Synthesis 
Second Synthesis 
Comparison 

A. CLASSICAL TECHNIQUE 

This synthesis technique considers the make-up of the network as a 
tandem-connected sequence of constant resistance sections, each one imposing 
constraints on the over-all transfer function. It will be shown in the procedure 

that to be physically realizable, the simple quadratic lag function must be 
modified by surplus factors, resulting in  a more complex form for the trans- 

fer function. 

1. Physical Realizability Conditions 

It can be shown that for a transfer function to be realizable by 

passive elements in the form of tandem-connected stages in a constant resistance 

ladder network, it must possess the following properties: 

Be minimum phase. 

Be positive real (pr). 

Have no poles on the imaginary axis. 



It may be noted by an inspection of Equations (VI-1) and (VI-2) that 

the first two conditions are readily satisfied. 

1 -  1 
2 Q r3)- 0.0625 S + 0.125 S + 1 

(VI-1) 

(VI-2) 

A constant gain factor, K, i s  introduced in the transfer function which 

must be determined to make the branch impedances realizable. (It is accounted 
for by introducing a compensating gain factor for the over-all ladder network.) 
To test for  p ry  consider the transfer function in the form: 

T(s) = K 1 1- K l t  (SJ 

‘K(O.0625 s2 + 0.125 s + 1) 

1 1 where t (s) = 
[K (0.0625 s2 + 0.125 s + 1) 

substituting s = j w results in 

therefore, the real part is: 

N(W2) 
2 

16 1 6 - W )  

= D(w2) 2 

(VI-3) 

(VI-4) 

(VI-5) 

(VI-6) 

Now, noting that for w ;r 0 the denominator is positive and the constants in front 
of the brackets a re  also positive, one has to determine the conditions, if any, on 
the numerator for all w 2 0, to determine positive realness. 

2 2 (VI-7) N ( u  ) = 1 6 - W  
2 

now, for N (w ) to be pr 

(VI-8) 2 16 ;r w for all w 2 0  

therefore, since the above condition is not satisfied for all possible values of 4 

the given transfer function is not pr. 
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Multiplying the numerator and denominator of the above function by a 
factor (S + a), a pr transfer function may be determined, leading to a physically 

realizable network configuration consisting of passive elements. 

The ref ore : 

t ( s ) = -  (VI-9) 
S 2 + 2 s + 1 6  

(VI-10) 

where the particular value of 01 will be chosen so as to simplify the computation 
and still satisfy the pr conditions, and: 

1 6 -  1 1 --- . - 
K1 52 (VI-11) 

It may now be noted that the fundamental transfer function has been 
made more complex to meet the restrictions imposed by the physical realizability 

conditions. A t  this point, the constant resistance ladder network consists of at 
least two cascade stages, defined by the transfer functions tl (s) and t2 (s). 

Determining the conditions f o r  tl(s) to be pr, by substituting s = j w 
results in: 

therefore, the real part is: 

(VI-13) 

Since K is a positive definite and the denominator is positive for all w 2 0 the 

transfer function will be pr for the condition: 

a s 2  (VI-14) 

Therefore for ease of computation assume an: 

a =  1 

a3 

(VI-15) 



resulting in a transfer function of the form: 

s + l  
= tl (s) ' t2 (s) t ( s )  = 

[ K ~  (s2 + 2s + 16) 
(VI-16) 

To determine the value for K1, it may be shown that for a lead quadratic 
, the value for K may be determined by S + Q  of the general form 

K (s + 2(:wns + u:) 
taking the largest value determined by the following equation: 

(VI- 17) 

Therefore, discriminating between the two values calculated from Eq. (VI-17) 

[ z= 1 0.06257 

(VI-18) 

results in using: 

K1 = 1 (VI-19) 

Since t2(s) is a pr function, the choice of K2 was governed by the 

criterion of simplifying the computation. Therefore, a K2 = 1 was  chosen. 

2. Determination of Circuit Parameters 

The circuit configuration for a cascaded constant resistance ladder 
network is shown in Figure VI-1. Where: 

1 

'bn 
z a n = l +  - 

Using Equations (VI-20) and (VI-21j to calculate Zal and Zbl results in: 

Zal = 1 + 1 s +  -- 
+ -  15 15 

1 - 

(VI-20) 

(VI-21) 

(VI-22) 
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Figure VI-1. Cascaded Constant Resistance Ladder Stages 

1 

15 15 

s 2 + 2 5 + 1 6  = s +  
1 - s + l  + -  'bl= 

which may be interpreted circuitwise as shown in Figure VI-2. 

(VI-23) 

Figure VI-2. First Stage of Ladder Network 

In a manner similar to that indicated above, the impedances Z and a2 
zb2 were calculated as: 

1 za2 = 1 + - (VI-24) 6 

z b 2 = s  (VI-25) 

which may be interpreted as the second stage circuit as shown in Figure VI-3. 



L: I 

I 

Figure VI-3. Second Stage of Ladder Network 

The normalized constant resistance ladder network satisfying the 
transfer function defined by Equation (VI-1) is indicated in Figure VI-4, with 

the unnormalized values (RL = 800 G) shown in parentheses. It contains 1 0  

elements, and the over-all gain factor (K) that yields the final required compen- 

sation network is given a s  Equation (VI-16). 

L= I 
( 8 0 0 H )  

R = I  
(soon) - . 

RL = I  I I R c = i-i5 
(800A) C- l  -_ (53.3 n) 

I (83 .3  mf ) 

15 
(53.3H) 

(1250mf)" L z -  

Figure VI-4. Circuit Developed Using Classical Technique 

B. FIRST SYNTHESIS 

A simple configuration is considered first s o  as  to develop some numerical 
insight into the problems associated with the synthesis of networks. Figure VI-5 

is a diagram of the network, containing i ts  topology and impedances as suggested 
in Table N - 2 .  
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1 Figure VI-5. One Mesh Circuit Used for 

Although this configuration is trivial in the sense that the load imped- 
ance is not considered, the insight gained from the calculations more than out- 

weighs this criticism. 

1. Equating Coefficients 

Since the circuit transfer function was of the form: 

1 

ICs + R C s + l  
t(s) = 2 (VI-2 6) 

it was possible to determine the values for the circuit parameters exactly by the 

simple expedient of equating coefficients, therefore: 

LC = 0.0625 
RC = 0.125 

(VI-27) 

Assuming a particular value for the inductance: 

L = 400 H 
it is now possible to determine the other values Uniquely as: 

R = 800 0 

C = 156.25 mf 

2. KeeDing One Variable Constant * -  

For ease of computation the following normalized values were 
arbitrarily chosen as the initial point to start the minimization process: 

(VI-28) 

(VI-29) 

(VI-3 0) 

Po (xl, x2, x3) = Po (R, L, C) = Po ( 0 . 6 ,  0.4, 0.1) (VI-31) 
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TABLE VI-1 

SUMMARY OF FIRST SYNTHESIS ITERATIONS X2 = CONSTANT 

Eo X1 = R1 2 x3 = c 2 x = L 1  Ite rat ion 

1 

2 

3 

4 

5 a ~  
5b 
6 

7a2 

7b3 

.6  

.6004387384 

.6008942761 
,60156b7763 

.6645457131 

.8006996183 

.8006996183 

.8006996183 

800 

. 4  

. 4  

. 4  

. 4  

.4 

. 4  

. 4  

.4 
399.65049640H 

.1 

.1303752154 

.1473414394 

.1582284086 

.2046841632 

.1582284086 

.1568967194 

.1565585856 

.156695499mf 

.5532536487 

.1573778386 

.0386337954 

.0185647458 

.3492697383 

.0006366793 

.0000697935 

.0000166480 
___-_-_---- 

1) Changed from tangent descent to relaxation technique 
2) Final normalized values 

3) Final denormalized values 
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The results of the minimization of the error function E are  summarized in Table 

VI-1. A comparison of the final denormalized values, with the exact values 

determined by equating the coefficients, shows that all values are within toler- 

able error,  and that the er ror  could be decreased by further iterations. 

3. Varying Al l  Parameters 

A s  the next step in the development all parameters were varied, 

starting at the same initial point a s  previousiy. Af t e r  thirty-six iterations 
only, the final normalized values and final denormalized values are presented 

in Table VI-2. 

TABLE VI-2 

SUMMARY OF FIRST SYNTHESIS ITERATIONS VARYING ALL PARAMETERS 

X1 = R1 x2 = L1 x3 = c2 Eo 
~~ 

Normal Value 0.6015241501 0.3176630756 0.1967493373 0.0008948796 

%norm. Value 800 a 422.477568H 160.15241501mf ---------- 

By continuing the iteration process the error, Eo, could be further decreased, 

bringing the values of the parameters closer to those determined previously. 

C. SECOND SYNTHESIS 

After  considering the trivial single mesh case as  noted in Subsection VI-By 

a simple two-mesh topology with load impedance was next used as a more realistic 
approach to the problem. It may be noted that the circuit designer, by using the 
technique advocated in this work, has at his command a large number of networks, 

each yielding the required transfer functions. By adhering strictly to the classical 

approach, the designer has only a limited configuration that meets the rigid require- 
ments which are satisfied in general by ideal elements. Figure VI-6 is a diagram of 

the simple two-mesh topology and impedances suggested by Table IV-2. 
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i; c, f R 4  
[.*) 1 Figure VI-6. Two-Mesh Circuit Used for 

The basic idea for setting up the e r ror  function E of several variables xlY 
x 

E are also summarized below (Subsection VI-C-2). 

. . . x is outlined below. The results of the minimization of the e r ror  function 2' n 

1. Tktting up" E 

Define incidence matrix:[ I ] = [: -: :] 
la -nl Find transpose of incidence matrix: [IIT = 

step (3) 
form: 

F P I  = 

Define elements of primitive diagonal matrix in complex 

R I O  0 0 
0 0 0 0  

+ j  
0 0 R3 0 

O O O R 4  
- r ' 0 

1 -- 
w5c2 
0 
0 

0 ! 0 

Find the characteristic equation by matrix multiplication: 

[Zp] [ I  I T  ,, where: 
1 - 1 

R1 L1 - "sc2 osc2 
1 -- 

O R 3 + R 4  i w5c2 w5c2 
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Step (5) Find minor M12 of the determinant of: A 

Step (6) Using the complex load ZL = R4 + j [: 0 1 multiply it by the 
minor I M12 1 to define the numerator: 

l w ) + j n  l / , i \ = Q + j  - R4 
OSC2 

?R \ s -I '5' 

Step (7) The circuit transfer function t(s) is now defined as: 

n (u ) + j  3 (us) R s  + (us) + j 4 (us) 
t(s) = 

Step (8) Define the e r r o r  function E a s  the magnitude function 
squared which, summed Over all discrete values of us, yields: 

t - 

+R +R )]I2 E =I {R(uS) F l ( R 3  +R4) + c L1 1- I(us) [us L1(R3 +R4) - - 1 
2 wsC2(R1 3 4 

s=o 

which may be written using the generalized variable xi as: 
c 
1. X 

s=o 

2. Evaluated Circuit Parameters 
(VI-32) 

The result of minimizing Equation VI-32 in Step 8 of the preceding yielded 
the normalized values for the network parameters. Table VI-3 summarizes the re- 
sults at each iteration of the tangent descent procedure. Step 6b in Table VI-3 con- 

tains the denormalized values that refer to the network configuration shown in 

Figure VI-6. 

I 
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Since a desk calculator was used throughout this work, every effort 

was made to decrease the calculations to 10 significant figures. The following 
approximations were used, since they would not detract from the effectiveness 

of the technique: 

1) 

3) 

The particular frequencies of interest to NASA were located at  

w = 1.885,  7 .8540,  12.8800,  19.1638, 23.876; for ease of 

computation the frequencies that were used were LLI = 1,  6 ,  12, 
18, 24. 

Although the e r ro r  function should be summed over all the dis- 

crete frequencies of interest, another simplification for com- 

putational purposes was made in which the frequencies of in- 
terest were limited to w =  1 and W =  6. 

By using the values derived from the minimization procedure, 
the transfer function was of the form: 

This result is considered a s  an approximation, since the computation was 
stopped when there was no significant change in the third decimal place of the 
e r ro r  function, and no further refined calculations (such as  the gradient tech- 
nique) were used. 

Figures VI-7 and VI-8 compare the required curve (dotted line) with 
the curve developed using the minimization curve (solid line). It may be noted 

that for engineering purposes the gain e r r o r s  a re  small a t  the two designated fre- 
quencies of interest, and in  certain regions there has been an improvement in 
the phase response. 

D. COMPARISON 

A direct comparison between Figures VI-4, VI-5, and VI-6 shows that by 

using classical synthesis techniques, a more complicated network configuration 
results in the interconnection of ideal (i. e. , non-dissipative) branch elements. 

The simple quadratic lag function that was considered had to be modified by sur- 
plus factors (resulting in a more complex form of the transfer function) before 
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the classical synthesis procedure could be applied. The application of a digital 
computer to the classical technique is improbable because of the difficulty in 

writing a general program that would still only result in the calculation of ideal 

element values. 

By formulating and minimizing the objective (error) function, greater em- 

phasis and control is placed on satisfying the specifications with various network 

topologies at discrete frequencies of interest to the design engineer than by pre- 

vious classical techniques. A s  indicated by Figures 1-1 and VI-9, it is possible 
to mechanize the process presented in this report for digital computer applications, 

thereby simplifying the over-all synthesis procedure. 

Minimum element count, topological configurations of interest, and pro- 

bable computer mechanization further recommend this technique for synthesizing 
networks by minimizing real-valued functionals rather than using the more classical 
procedures. 
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Figure VI-9. Flow Chart Outline of Main Program (Continued) 
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SECTION VII 

SUMMARY AND CONCLUSIONS 

A technique for synthesizing networks with resistive loads, resulting in 
normalized element values that have voltage transfer functions meeting the gain- 

phase compensation requirements se t  by NASA, has been presented. By mini- 
mization of the least squared e r ror  function using an iterative process such as 
the I'tangent descent to a minimum" for a desk calculator, or the "gradient 
technique" for a digital computer, the normalized element values can be deter- 

mined. 

The concept of synthesizing networks from topological considerations was 
developed in Sections IV and V. A quadratic lag function synthesis was considered 
in detail in Section VI; a comparison was made between the classical synthesis 

technique and the one considered in this report. By considering topological con- 
figurations of interest, the mathematical process (which can be mechanized for 
digital computer application) yields less complex networks with non-ideal passive 

elements than those determined by classical synthesis techniques. 

From the studies that have been completed, it would seem that further re- 
finements are  possible, starting with the over-all design procedure. The ulti- 

mate procedure is one that is completely computer-mechanized from the input 
gain-phase NASA requirement to the output network topology and realistic com- 
ponent values. Consequently, emphasis should be placed next on those subroutines 

that now offer a high degree of success, consistent with the presented theory of 

eventually being incorporated into the general approach. 

A digital computer program should be written for 1) defining the objective 

function to include various network topologies of interest, and 2) mechanizing the 

iterative process used to determine the component values. Then, using the com- 

puter program as a tool, various areas of interest, such as  convergence to the 
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absolute minimum, initial approximations, resulting circuit configurations, and 

component values should be investigated. 

The topology considerations should be expanded so that the best network 

configuration can easily be determined. A general topology should be defined 

that would be useful in generating a number of network configurations, each of 

which satisfies the requirements. Then the best network should be defined, 
using some criterion based on one or all of the following: ease of implementation, 
component values, reliability, number of components, or even individual prefer- 
ence. 

Consistent with the input requirements, it should be possible to use this 
information to generate those specific topologies from the general considerations 

that would be the most advantageous to use in the iterative process of component 
value determinations. 

The additional work in the above areas could hopefully lead to simpler, 

more straightforward computer procedures for the realization of any network 
that is generally optimum in terms of its configuration and passive elements. 
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APPENDIX "A" 

THE GRADIENT METHOD OF STEEPEST DESCENT TO A MINIMUM 

Derivation of the expressions used in the application of the method af steepest 
descent for solving non-linear simultaneous equations will  be derived. 

Assume a choice of the xi variables as an initial solution is made at which 

9 of Equation (III-23) does not have a stationary value. The iteration method 

described will  result in an improved set of values of the parameters. If so 
desired, they may be further improved (if the true minimum has not already 
been reached) by a continuation of the process, considering this improved set 
as a new initial solution. 

If we regard xi as rectangular Cartesian coordinates in a Euclidean 
n-space, for the trivial case n =2, the geometrical description may be displayed 

accurately in a diagram. For n = 3, simple geometrical representation is not 
possible; but since geometry in n-space is analogous to geometry in 2-space or 
3-space, the geometrical illustration in 2-space serves as a general guide to 

procedure and generalization to more variables will easily follow. 

The method can be illustrated geometrically for the case of two variables 
either by means of a three-dimensional diagram in which two dimensions are 

used to accommodate the variables x and y and the third to accommodate the 

response surface *, or  by two-dimensional diagrams in which the response sur- 
face is represented by contour lines of constant @. 

In Figure A-1, let C1 and C3 represent curves of constant *, C1 being 

the curve of intersection of the surface 4(x, y) and the plane B. The curve 
C2 is the intersection of the surface O(x, y) and the normal plane to C1 at  Po; 
the point (x , y , P ) is our initial approximation to the absolute minimum of 

0 0 0  
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Figure A-1. Plot of the Surface 9 = 9(x, y) 

a, which in the depicted surface is the point PM. We approach this point PM 

by a stepwise process of the gradient technique, that is, the direction of steepest 

descent from our initial approximation is in the diyection of the negative gradient 
of 9 which is in the direction of the curve c2 extending to the local minimum at P. 

The negative gradient direction is normal to a contour illustrated as the projected 

axis in the x, y plane labeled nl. The local minimum P is shown as  the point Of 

tangency, in  the gradient direction n, to the contour Cg. This minimum P of C2 

is taken a s  a new approximation to P and the process is repeated. M 
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In the plane (e, n) just now introduced, the curve C2 has an equation 

9= Wn). (Figure A-2) 

Figure A-2. Plot of C2 in Coordinate Plane 

A parabolic approximation to C2 by Taylor's theorem gives: 
2 

C 

where: 

a) On and 0 
ated at the initial point Po. 

cn denotes the change in the x, y coordinates in the 
normal to C1. 

are the values of the indicated partial 
n, n 

b) 

(A -1) 

derivatives evalu- 

direction of the 

To determine the point P, we set the partial derivative of Equation (A-1), taken 
with respect to fn, to zero and solve the resulting expression as: 

From an application of the theory of vector analysis, (Pn in Equation (A-2) 

is found to be the directional derivative of @ in a direction normal to the given 

curve C through Po and is often written in the form ~ n '  Thus if 6 is a unit 
vector normal to C1 (the unit vector which has the direction of grad Q is 

a 9  
1 



we have : 

= - a@ = grad u = I grad 4 I = / a x  
n an 0 

where: 3 a0 3 Q0 

*x 0 -ax Yo a Y  
, a  =- - 

the second partial of Qn is 

(A-3) 

In Equation (A-4), dx 
the point slope form of the equation of the straight line, namely, 

9 are  required. Writing the equation of the n-axis using dn and dn 

= (x - xo) -yo dx 
(A -5) 

which is the equation of the tangent to C1 at  the point Po, the line perpendicular 
to C1 a t  Po would be the normal (n-axis): 

- dx 
y - Yo - - dy (x - xo) 

It follows, that for: @ = @o 

‘ I  

Equation (A-8) can be written in terms of n as: 

and then we get: 
ip 

0 Q 

X 

0 
+ x  = n -  O + x  0 

*x 

n 
0 

Therefore, considering the point P of the curve C3 projected to the n axis having 

coordinates x, y, the equation of the n axis in  the (B, n) plane becomes: 

(x -x o)JT 
0 YO 

(A-9) 
X 

@ 
0 

(A-10) 
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The ref ore : 

The remaining terms on the right side of Equation (A-4) are  evaluated as: 

and: 

(A -11) 

(A-12) 

(A-13) 

(A -14) 

(A-15) 

We thus evaluate Equation (A-4), substituting (A-12), (A-13), (A-14), (A-15), and 
get: 

(A-16) 
Equation (A-3) and Equation (A-16), substituted into Equation (A-2) gives: 

Now Equation (A-17), written in terms of the increments in the coordinate directions 
is : 

€ = € cos (n,x) (A-18) x n  

c = cn cos (n,y) (A-19) 
Y 

Where (n, z) and @, y) are  the angles between the n axis and the x and y axis, re- 
spectively, and: 



X 
0 cos (n,x) = - 

'n 

cos (n,y) = - 
n 

9 

4? 
YO 

(A-20) 

(A-21) 

Thus finally utilizing Equations (A-18), (A-20), and (A-17), we get: 

- (A -22) +a? ) 
_ -  

yo yoyo 
€ X  @x p?x x 

0 0 0  

and for Equation (A-19), using Equations (A-21) and (A-17) gives: 

(A-23) 

Equations (A-22) and (A-23) denote the changes in the x,y coordinate axis 
direction to the local minimum P. 

Generalizing the above derivation to the case of xi variables for i = 1,2. . . n 
we obtain: 

(A -24) 

where : 

and: 

9. 1 = [gi 
0 

N 

(A -25) 

From Equations (A-24), (A-25), and (A-2) it follows that: 
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and consequently, 

descent are given 

the changes, ci in individual coordinates (xi), for steepest 

by: I N  \ 

('~$1 i=l aioj2 
c. = E cos (n,x.) = - i n  1 

(A-26) 
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APPENDIX “B” 

THE METHOD OF STEEPEST DESCENT ALONG A TANGENT 

This method, developed by Booth, is a rapid method for improvement of 
the initial approximation, thus speeding up the process of convergence to a 
minimum, since it does not require any calculation of second derviatives. This 
is desirable for the application being considered where the variables are numer- 
ous and the second derivatives complicated. It involves only the calculation of 

the function to be minimized and its first derivatives. 

t In this approach, a linear approximation is made to the curve C2 of Figure 
(A-1) as: 

@ = 9 , + c  (9 (B-1) 
no 

I 

\ 1 

Figure B-1. Descent Along Tangent 
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In Equation (B-1), setting = 0, and solving, one obtains 

This is equivalent to moving down the tangent to the (a, n) curve at  the 
point $, until the line intersects the n axis. The ordinate to the curve corres- 

ponding to the point of intersection of the tangent line and the n axis will be the 

approximation to ih 
the new approximation until 4 begins to increase, shown as point P2 on Figure 

B-1, at which time it is necessary to revert to a more accurate technique such 
as Equation (A-1) or the Taylor series method. 

on the next iteration. The procedure is repeated using min. 

The change in the individual coordinates is found utilizing the formulas 
of Equations B-2, A-18, A-19, A-20, A-21, and given as: 

ip ai 
0 

0 = c cos (n,x.) = - [f ‘i n 1 

i=l 
L J 

from which, 

P X i 
th with x: the variable in question, i dimension, pth iteration. 

(B-3) 
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